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Abstract The elongation method has been applied to

elucidate the spin-dependent behavior of the pyrrole-based

spin-polarized molecular wire containing 1-pyrrolylphenyl

nitronyl nitroxide with oligothiophene units under the

influence of an applied electric field. It was found that the

donor pyrrole ring causes the delocalization of electrons

over the molecular wire regardless of the spin-orientation.

In addition, nitronyl nitroxide as a radical unit shows two

important features. First, it changes the spin-distribution of

the delocalized electrons from same ratio of a- and b-spins

to dominant b-spin. Second, it shifts the distribution of

electrons in the same direction as that of the applied

electric field.
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1 Introduction

In recent years, spin-dependent transport such as spin

valve, etc., has drawn considerable interest in the field of

spin electronics for the applications to magnetic informa-

tion storage [1–7]. In the spin valve, a non-ferromagnetic

material is inserted between two electrodes of ferromag-

netic half-metals [8] in which the Fermi level crosses only

one side of the spin-band. Spin-polarized electrons that are

induced by the potential difference can be transported

through the non-ferromagnetic material without losing the

spin-information. As an alternative approach to control the

spin-information, an intramolecular spin alignment in p-

conjugated organic systems has been investigated for

‘‘molecular magnetism’’ [9–24]. In such systems, the spin-

information is transmitted through p-electron network.

More recently, quantum wires such as spin-polarized

molecular wire [25–28] or spin-polarized nano wire [29]

were designed for controlling the electronic spins in the

wires. In particular, spin-polarized molecular wire 1, as

shown in Fig. 1a, has been the subject of considerable

attention as a new type of spin-rectifying molecular system

[25]. Pyrrole-based spin-polarized molecular wire 1 con-

sists of two parts, that is, spin-polarized donor (SPD)

[22–24, 30–38] and molecular wire. The SPD part is a

pyrrole-based SPD 2, 1-pyrrolylphenyl nitronyl nitroxide,
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as shown in panel (b) of Fig. 1. In addition, the SPD part

can be further divided into two units, electron-releasing

‘‘donor unit’’ that includes pyrrole and phenyl rings, and

‘‘radical unit’’ composed of a nitronyl nitroxide (NN).

Oligothiophene chains construct the wire part. Due to the

unpaired electron in the central SPD part, the whole system

1 retains doublet state.

At the unrestricted Hartree–Fock (UHF) level of theory,

SPD molecule 2 has three important spin orbitals (Fig. 1c):

a singly occupied a-spin orbital ‘‘SOMO(a)’’, the highest

doubly occupied a-spin orbital ‘‘HOMO(a)’’, and its b
counterpart ‘‘HOMO(b)’’. The most important feature of

the SPD molecule is that the orbital energy of HOMO(b) is

higher than that of SOMO(a). For instance, semi-empirical

UHF calculations predicted the higher energy HOMO(b) in

NN derivatives [33–36]. This can be explained by spin

polarization effects and the increases in energy of the

HOMOs due to the electron-releasing donor effects. This is

in contrast to the property of general radical molecules in

doublet state, where the orbital energy of SOMO(a) is

higher than that of HOMO(b).

It was expected by experimentalists that in the spin-

polarized molecular wire, the b-spin electron of SPD part

can be removed under the applied electric field corre-

sponding to a primary oxidation potential along the wire

[25] (see the bottom of Fig. 1a). The first oxidation,

removal of b-spin electron from the HOMO(b), changes the

multiplicity of the system from doublet to triplet state. The

triplet state is expected by considering the exchange inter-

actions due to a non-disjoint type linkage between donor

and radical units. In fact, the triplet ground state of SPD

molecule 2 after one-electron oxidation was observed

experimentally [36]. The triplet ground state of mono-

cationic SPD molecule 2 was examined at the several levels

of theory for the geometry optimized under the constraint of

planarity (see Table 1). Our calculations predicted the

triplet ground state at both the spin-projected UHF/

6-31G(d) and UPM3 levels, while UB3PW91/6-31G(d)

shows the singlet ground state. The current through the

molecular wire is spin polarized to b-spins in the triplet state

because the unoccupied b-orbital after removal of an elec-

tron can be used for transporting b-electrons. In the next

step, an a-electron will be removed by the applied electric

field corresponding to a secondary oxidation potential, and

the system returns to the doublet state. In contrast to the

triplet state, an a-spin current passes through the wire part,

because the unoccupied a-orbital after the removal is used

for transporting a-electrons. Therefore, this system has a

potential for rectifying the type of electron spins of tun-

neling current through the molecular wire.

Theoretical studies have been actively conducted on the

properties of molecular wires [29, 39–46], for example, spin

filtering properties of sandwich molecular wires [45, 46],

charge transport properties of molecular semiconductors

under an external electric field [41]. However, little is

known about the electronic structure of spin-polarized

molecular wire 1 and its behavior in an applied electric field.

The elongation method [47–59] was developed to effi-

ciently determine the electronic structures of quasi-one

dimensional periodic and non-periodic polymers. This

method mimics the mechanism of the experimental
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Fig. 1 a Geometries of pyrrole-based spin-polarized molecular wire

1. b Geometry of spin-polarized donor (SPD) (1-pyrrolylphenyl

nitronyl nitroxide) 2. c Properties of molecular orbitals for spin-

polarized donor. d Model molecules for the pyrrole-based spin-

polarized molecular wire. ‘‘SPD part’’ is indicated by boxes in broken

line. The other region was defined as ‘‘wire part’’

Table 1 Total energy difference (in a.u.) between singlet and triplet

states for mono-cationic pyrrole-based spin-polarized donor 2

Calculation level Total energy (in a.u.)

Triplet–singlet

PUHF/6-31G(d) -0.08998

UB3PW91/6-31G(d) 0.01306

UPM3 -0.00877

UPM3//PUHF/6-31G(d) -0.01971
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polymerization. Monomer units attack a starting cluster

step by step, therefore the electronic states can be deter-

mined when the system is elongated. In this article, we

applied the UHF variant of the elongation method

(UHF-elongation) to the spin-polarized molecular wire that

retains a radical electron.

The purpose of the present article is to elucidate the

electronic structure of the spin-polarized molecular wire 1

in the presence of an electric field using the elongation

method. The paper is organized as follows. In Sect. 2, we

briefly review the elongation method at the UHF level of

theory. In Sect. 3.1, the electronic structure of SPD mole-

cule 2 is analyzed. In Sects. 3.2 and 3.3, the elongation

method is applied to calculate the electronic states of the

spin-polarized molecular wire in an electric field. Finally,

the conclusions are given in Sect. 4.

2 Method

In this section, we will briefly describe the elongation

method using the spin-polarized molecular wire 1 as an

example. The whole elongation procedure can be summa-

rized as follows (see also Fig. 2):

(a) A starting cluster includes the central SPD part and

eight thiophene rings, four at each side of the SPD

part. The elongation calculations are initialized by

conventional UHF method under the applied electric

field, E~. The size of the starting cluster, Nst, is the

number of thiophene rings. Nst = 8 is used in the

current elongation run.

(b) The canonical molecular orbitals (CMOs) of the

starting cluster are converted to localized MOs

(LMOs) by a unitary transformation. Two distinct

sets of LMOs are obtained. One contains the LMOs

which are assigned to the frozen region. The other set

is assigned to the active regions. The frozen region,

denoted as A, is the central SPD part, while the active

regions, denoted as B, are the thiophene rings

attached to both sides of the SPD. In the next step,

two new thiophene rings, let us say C-monomers,

attack both sides of the B regions. The frozen region

is far away from the C-monomer so that the

interaction between them has practically no effect

on electronic structures of A. The active regions

interact strongly with the C-monomers, therefore both

B and C regions form the ‘‘interactive’’ regions.

(c) The eigenvalue problem is solved in the reduced

space, i.e. in the interactive region (B ? C) under the

applied electric field. It should be stressed that in the

elongation step, the frozen region is excluded from

the variational space.

(d) In the next step, the frozen region is extended to the

right and left from the SPD part by thiophene rings,

i.e. new frozen region is now formed by SPD and two

thiophene rings. As one may notice, the number of

thiophene rings in active region remains unchanged.

The eigenvalue problem is solved for a newly formed

interactive region.

(e) By repeating localization and elongation steps, the

electronic structure of large aperiodic systems such as

spin-polarized molecular wire 1 can be obtained.

The methodology presented above guarantees compu-

tational efficiency due to substantial reduction of the size of

the variational space. The size, i.e. the number of active

space MOs is constant and relatively small. This simplifi-

cation has only minor influence on the accuracy since the

active space includes several units directly interacting with
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Fig. 2 The main steps of calculating the electronic structure of large

aperiodic systems under an applied electric field within the elongation

scheme. The static electric field parallel to the molecular wire is

applied from left to right as shown in (a)
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attacking monomers. Therefore, the electronic structure of

aperiodic polymer can be efficiently calculated with high

accuracy. In this work, the elongation procedure has been

implemented and linked to the GAMESS program package

[60].

The electronic structure under the applied static electric

field is calculated by adding the l~ � E~ term to the Hamil-

tonian, that is H ¼ � 1=2ð ÞDþ Vðr~Þ þ l~ � E~, where l~ and

E~ are the dipole moment operator and the electric field,

respectively. The magnitude of the applied electric field is

ranging from 0.0000 to 0.0020 a.u. The direction of the

field is along the molecular wire. The remaining ab initio

and semi-empirical MO calculations other than the elon-

gation method were performed using Gaussian03 program

package [61].

3 Results and discussion

3.1 Electronic structure of spin-polarized donor

molecule

First, the electronic structure of the pyrrole-based SPD 2

was calculated at the spin-projected PUHF/6-31G(d),

UB3PW91/6-31G(d), UPM3, and UPM3//PUHF/6-31G(d)

levels. In the calculations, restricted geometry optimiza-

tions were performed by imposing planarity on system 2.

The UHF level of theory gives us direct reference to pre-

vious investigations on SPD systems [22, 25, 33–36]. Spin

contamination effects cannot be eliminated completely,

even by applying the spin-projected technique. For exam-

ple, the s2
� �

value of SPD 2 was equal to 1.65 and 1.20 at

the PUHF/6-31G(d) and UPM3//PUHF/6-31G(d) levels of

theory, respectively, while the exact value should be equal

to 0.75. The restricted-open Hartree–Fock (ROHF) treat-

ment that does not suffer from spin contaminations, by

definition, cannot be applied for describing spin polariza-

tion effects. Figure 3 shows MO energy diagram near

SOMO in the pyrrole-based SPD 2. It is found that the

energy level of HOMO(b) is above that of SOMO(a) except

for the UB3PW91/6-31G(d) level. Such a qualitative pic-

ture of orbital energy levels is also confirmed by fully

optimized PUHF/6-31G(d) calculations. In other words, the

electronic structure near SOMO does not strongly depend

on the conformation. In unconstrained structure of 2, the

torsion angle between pyrrole and benzene rings is equal to

44.6�, while the angle between a benzene ring and a radical

unit is equal to 7.2�. In contrast, density functional theory

(DFT) calculations for SPD 2 at UB3PW91/6-31G(d) level

predict that the highest occupied MO is an a-spin orbital

(see Fig. 3). However, DFT level is not used for our purpose

because orbital energies obtained from DFT calculations

have no simple physical meaning as described in Ref. [62].

It is expected that the interaction between radical and

donor units is responsible for very unique property of SPD;

in which the orbital energy of HOMO(b) is higher than that

of SOMO(a). In order to confirm this, we examined the

MOs of SPD molecule 2 at the UPM3 level based on

optimized PUHF/6-31G(d) geometry. The analysis is

focused on the MO correlation diagrams between donor

units, i.e. pyrrole and benzene rings, and radical unit, i.e.

NN. The interaction profiles near SOMO are shown in

Fig. 4. The MO diagrams for a- and b-spin orbitals are

illustrated at left- and right-hand sides of the figure,

respectively. Panel (a) illustrates the interaction between

benzene ring and NN. It can be seen that the interaction

between HOMO of benzene ring (A1 symmetry) and

HOMO of NN (A1) gives new MOs /? (in phase, 1A1) and

/- (out of phase, 2A1) of phenyl NN for both a- and b-spin

resolutions. The /? is stabilized by the interaction, while

the /- is destabilized. In the case of b-spin orbital, in

particular, the orbital energy of /- was increased largely

compared with that in the case of a-spin orbital. This dif-

ference between a- and b-spin orbitals is mainly due to the

effect of spin polarization in NN, that is, HOMO(b) of NN

has higher energy than HOMO(a) of NN does. The spin

polarization effect causes small difference in orbital energy

between the HOMO(b) of benzene ring and HOMO(b) of

NN. In contrast, there is large difference between

HOMO(a) of benzene ring and HOMO(a) of NN. Because

of the strong interaction between HOMO(b) of benzene

ring and HOMO(b) of NN, the order of orbital energies of

phenyl NN becomes SOMO(a) [ HOMO(b) [ HOMO(a).

Here we approximately considered only orbital energy

difference. Figure 4b shows the correlation diagrams

among pyrrole ring and phenyl NN molecular orbitals. The

interaction between NHOMO of pyrrole ring (A1) and

HOMO of phenyl NN (A1) leads to new MOs /? (in phase,

1A1) and /- (out of phase, 2A1) of SPD molecule for both
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Fig. 3 Orbital energies of the pyrrole-based spin-polarized donor 2.
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spin resolutions. Small difference in orbital energy was

found between the NHOMO(b) of pyrrole ring and

HOMO(b) of phenyl NN, while there is large difference

between the NHOMO(a) of pyrrole ring and HOMO(a) of

phenyl NN. In the similar manner to Fig. 4a, the strong

interaction is expected between NHOMO(b) of pyrrole ring

and HOMO(b) of phenyl NN. The interaction causes the

important property of SPD molecule 2 that the b-spin

orbital is higher than a-spin orbital, that is, the order

of orbital energies of the SPD molecule becomes

HOMO(b) [ HOMO(a) [ SOMO(a). In this way, the

unique property of SPD molecule can be explained by

the strong interaction between donor and radical units in

the b-spin orbital.

3.2 Dependence of electronic structures on the length

of spin-polarized molecular wire

The elongation calculations were performed to elucidate

the electronic structure of the pyrrole-based spin polarized

molecular wire 1 under an electric field. The geometry of

spin-polarized molecular wire was obtained by the fol-

lowing steps:

(i) The structure of central SPD part was fully optimized

at the PUHF/6-31G(d) level.

(ii) Penta-thiophene oligomer was optimized at the RHF/

6-31G(d) level with a fixed planar structure. The

geometry of thiophene unit was assumed to be

equivalent to the central thiophene ring of the

oligomer.

(iii) The SPD and wire parts are built by keeping the

straight, planar shape of the molecular wire as shown

in Fig. 1a.

In the steps (i) and (ii), the geometry optimizations were

performed in the absence of external electric field. Of

course, the field will have effect on the geometry and on

the electronic structure of the system. However, this

complication was not taken into account in the present

study. The validity of the elongation method has been well

documented in Refs. [47–59]. Here we examine the

validity of the elongation method for spin-polarized

molecular wires in the presence of an electric field. The

total energy of the system was calculated at the UPM3

level. The static electric field |E~| = 0.0010 a.u. along the

molecular wire was applied from left to the right (Fig. 2a).

A comparison between elongation and conventional total

energies for Nst = 8?28 calculations confirms accuracy of

the elongation method. Even in the last elongation step

with 28 thiophene rings, the deviation in total energy from

the conventional reference energy is about 5.5 9 10-6 a.u.
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This is sufficiently accurate to analyze spin-polarized

molecular wires under the applied electric field.

Next, we examine dependence of the electronic structure

on the length of the molecular wire under the applied

electric field. Figure 5a shows the relationship between the

changes of net charges and the length of molecular wire

with the electric field |E~| = 0.0020 a.u., where Mulliken

charges are used for all the population analysis at the PM3

level. The difference in net charge from field ‘‘free’’

(|E~| = 0.0000 a.u.) calculations is analyzed. Here, we

plotted the change in the net charge of each thiophene ring.

The central SPD part corresponding to site-0 is excluded

from the figure. A negative value indicated an increase in

the electronic density. One can see from Fig. 5a that the

electronic structure is mainly changed at both ends of

molecular wire regardless of the length of the wire. The

electron population increases on the left-hand side of the

wire, while it decreases on the right-hand side. This elec-

tron transfer in the system is caused by the electric field

applied from left to the right (left side corresponds to

positive charge, right side corresponds to negative charge).

In other words, the electrons of wire are attracted by the

applied electric field, and flow from right side to left side,

i.e., in the opposite direction to the applied electric field.

Figure 5b shows the enlarged view of the central part of

panel (a). In the central part of the system, the electron

density decreases on the left-hand side of SPD-part, while

it increases on the right-hand side of SPD-part. This means

that the electrons in the central part flow in the same

direction as the applied electric field, that is, from left to

right side. This is the opposite behavior to the end part of

the system as shown in panel (a). In addition, the increase

of the electron population in the right side was larger than

the decrease in the left side. Such tendencies observed in

charge reorganization in the central part converged for at

least 14 thiophene rings in the system. Therefore, for

simplicity, subsequent analyses were performed using the

spin-polarized molecular wire with 14 thiophene rings. In

the next subsection, we will discuss the behavior of the net

charges of the central part of the system.

3.3 Delocalization of b-spin electrons in spin-polarized

molecular wire by the applied electric field

What is responsible for the unique behavior of the electrons

in the center of the system composed of SPD and 14

thiophene rings? To explain this behavior, we examined the

role of each part of the SPD, namely pyrrole ring, benzene

ring, and NN. Figure 1d shows additional model molecules,

introduced for analyzing the pyrrole-based spin-polarized

molecular wire 1. In model 3, we simply disregard the

radical unit, i.e., NN. The benzene ring is neglected in

model 4. The donor unit is excluded in model 5, that is, the

pyrrole ring is replaced by a thiophene ring. In the mole-

cules 1, 3–5, the system is divided into ‘‘SPD part’’ and

‘‘wire part’’ as shown in Fig. 1a and d. The molecular ‘‘wire

part’’ in 1, 3–5 is composed of 14 thiophene rings. Thus, the

resulting oligo-thiophene 5 includes 15 thiophene rings; a

central thiophene ring constitutes the SPD part and the

remaining 14 thiophene rings are in the wire part in 5. We

further define ‘‘net charge of SPD part’’ and ‘‘net charge of

wire part’’ by summing the net charges of SPD part and

those of the wire part, respectively.

Figure 6a shows the relationship between the strength of

the applied electric field and the change in the net charge of

wire part. The negative value of the change in net charge

of wire part indicates that the wire part obtains extra

electrons from the SPD part. As seen from the figure, there

is no delocalization of electrons from the SPD part to wire

part in model 5. The change in the net charge of wire part is

practically equals to zero regardless of the strength of the

applied electric field. One should expect such behavior,

because the SPD and wire parts are built from the same

thiophene ring. In model 4, the net charge of wire part

decreases with the increase in the strength of the applied
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Fig. 5 Change in net charge of each thiophene ring by the applied

electric field, |E~| = 0.0020 a.u. (UPM3). a General drawing, b
enlarged view of the center part. Graph shows the difference in net

charge from zero electric field (|E~| = 0.0000 a.u.). ‘‘N’’ is the number

of thiophene rings. The sites of thiophene rings are depicted in (a)
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electric field. The replacement of the thiophene ring by the

pyrrole ring leads to a charge accumulation in the wire. The

wire part obtained about 0.0014 electrons under the applied

electric field |E~| = 0.0020 a.u. In other words, the electrons

of the central pyrrole ring flow into the wire part. In models

1 and 3, the tendency of charge accumulation in the wire

part is similar to that in model 4 but to a lesser amount.

Therefore, the pyrrole ring plays a dominant role in delo-

calizing the electrons from the SPD part to the wire part.

Now, we examine the spin density (r) which is defined

as the difference between a-spin density (ra) and b-spin

density (rb), that is, r = ra - rb. Figure 6b shows the

change in spin density r under the applied electric field for

the wire part of models 1, 3, and 4 in which the deloca-

lization of electrons was observed. The spin density of the

wire part decreases as the strength of the applied electric

field increases in model 1. When the applied electric field is

set to |E~| = 0.0020 a.u., the change in spin density is about

-0.0005. That is to say, b-spin density is larger than a-spin

density by 0.0005 in the wire part. These results mean that

the flow of b-spin electrons from the central SPD part to

the wire part is 0.0005 more than that of a-spin electrons.

In addition, we find that 74.5% of the delocalized electrons

under the applied electric field |E~| = 0.0020 a.u. possess

b-spin. The percentage of b-spin density increases with

increasing magnitude of the electric field. In models 3 and

4 there is no radical unit, therefore, the spin density does

not change by the applied electric field. It is not surprising

since both models are closed-shell systems; UHF results for

closed-shell systems are practically equivalent to RHF

results. Therefore, the spin-dependent delocalization of

electrons over the molecular wire should be only expected

for model 1.

Finally, we have to inquire, ‘‘where are the delocalized

electrons?’’ Fig. 7 shows the change in the net charge at

each thiophene ring for models 1, 3–5 under various

applied electric fields of |E~| = 0.0005, 0.0010, 0.0015, and

0.0020 a.u. In this graph, we traced the central part of the

system. There is no change in charge distribution for model

5 regardless of the applied electric field (panel (d)). In

model 4 (panel (c)), the electrons of the SPD part are de-

localized over one or two thiophene rings next to the

central pyrrole ring, and this tendency is strengthened with

intensity of the applied electric field. Model 3 in panel (b)

exhibits the similar tendency to model 4. Thus, the benzene

ring added to the SPD part plays a role of a spacer here.

Model 1 in panel (a) shows quite different behavior from

the other models. On the right hand side of the SPD part,

the electron population increases with increasing magni-

tude of the electric field, whereas on the left hand side of

the SPD part, the electron population decreases. This result

means that the NN as a radical unit can shift the distribu-

tion of electrons in the same direction as the applied

electric field, that is, from left side to right side of the

graph. Furthermore, b-spin electrons are dominant com-

ponents in the spin-distribution of the localized electrons in

model 1, as mentioned above. In contrast, a- and b-elec-

trons are distributed equally on the wire part in the other

models. Therefore, the radical unit of model 1 is respon-

sible for the spin-distribution on the molecular wire.

4 Conclusions

In the present article, we have analyzed the electronic

structure of pyrrole-based spin-polarized molecular wire

under an applied electric field. We come to the following

conclusions for the spin-polarized molecular wire. The

unique feature of the SPD that the HOMO(b) is higher than

SOMO(a) is confirmed by semi-empirical and ab initio MO

calculations. This feature can be explained by the strong

interaction between donor and radical units in the b-spin

orbital. Pyrrole-based spin-polarized molecular wire was

analyzed in the presence of an electric field by the
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elongation method. It was found that the pyrrole ring in the

SPD part triggers off delocalization of electrons over the

thiophene rings next to the SPD part. In addition, the NN

radical unit shows two important properties. First, it

changes the spin-distribution from same ratio of a- and b-

spins to dominant b-spin. Second, it shifts the distribution

of electrons in the same direction as the applied electric

field.

We hope that these results provide a novel insight into

the investigation of spin-polarized molecular wires under

the influence of applied electric fields, and help in the

design of molecular quantum spin devices.
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